Requirements for Parallel I/O, Visualization and Analysis

Prabhat¹, Quincey Koziol²

¹LBL/NERSC

²The HDF Group

NERSC ASCR Requirements for 2017 January 15, 2014 LBNL

1. Project Description

- m636 repo
- LBL Vis Base Program (Bethel PI) [PM: Nowell]
 - Conduct fundamental and applied vis/analytics R&D to address exascale challenges
- ExaHDF5 Project (Prabhat, Quincey Pls) [PM: Nowell]
 - Scale Parallel I/O, and data management technologies for current petascale and future exascale hardware
- MANTISSA Project (Prabhat PI) [PM: Landsberg]
 - Develop scalable statistics and machine learning techniques for data-centric science

1. Project Goals

- Demonstrate successful application of visualization techniques to PB sized output
- Demonstrate HDF5 (and production I/O stack) scaling on current petascale and future exascale platforms
- Demonstrate sophisticated Big Data analytics techniques applied to TB sized complex, multi-modal datasets (simulations, experiments, observations)

2. I/O, Vis, Analysis Strategies (1/2)

We approach scaling and performance optimization by:

- Domain decomposition (spatial, temporal, etc)
- Collective buffering, compression, auto-tuning, minimizing synchronization points

Libraries and Codes:

- Simulation codes: VPIC, Chombo, FLASH, MOAB, SPH, IMPACT-Z, VORPAL, Warp, CAM5
- I/O: HDF5, NetCDF
- Vis: VTK, VisIt, Paraview

Characterization:

- I/O: particle, block structured, unstructured, AMR meshes
- Vis: volume rendering, ray casting, streamline computation
- Analysis: Big Data motifs (sparse/dense linear algebra, stochastic optimization, graph analytics)

2. I/O, Vis, Analysis Strategies (2/2)

Our biggest challenges are:

- Under-provisioned I/O resources
- Insufficient funding for I/O R&D
- Scaling of storage technologies wrt compute and interconnect
- Characterization of 'Big Data' analytics space

Our parallel scaling is limited by:

- Optimized hardware and middleware implementations
- High computational complexity of analytical algorithms

We expect our approach and/or codes to change by 2017:

- Utilize Burst Buffer/NVRAM technology
- Asynchronous and Fault Tolerance in HDF5
- Novel statistical and machine learning algorithms for analytics

3. Current/Projected HPC Usage

	Compute Hours	Target Concurrency	Data read/ written per run	Memory per node	Required software	Resources used	Data Stored
Current 2014	4M	10K-150K	100GB- 30TB	100%	HDF5, NetCDF, MPI, MPI-IO, pthreads, OpenMP, ScalaPACK, BLAS	/scratch /project	250-500 TB
Estimated 2017	30M	10K-5M	100GB- 1PB	100%	HDF5, NetCDF, MPI, MPI-IO, MPI+X?? ScalaPACK, BLAS	/scratch /project Burst Buffers	1-5 PB

5. Strategies for New Architectures (1/3)

Visualization Research:

- Experimenting with hybrid programming models (MPI+X)
- Reasonable success with pthreads/OpenMP
- Tests conducted on hopper, titan

HDF5:

- Production ready on all DOE centers [NERSC, ALCF, OLCF, etc]
- Programming model question is not as relevant; need OS/runtime to provide dedicated core for processing
- Additional cores for compression; offload to NVRAM

Analytics software:

- Extreme levels of concurrency (million-way parallelism) is probably not required
- Start with MPI+OpenMP, utilize vendor BLAS implementations
- Examining MIC architecture in collaboration with Intel Research

5. Strategies for New Architectures (2/3)

- Have there been or are there now other funded groups or researchers engaged to help with these activities?
 - Visualization: yes
 - Parallel I/O, Analysis: no
- Explain your strategy for transitioning to energyefficient, manycore architectures
 - Parallel I/O: hardware/software stack is in flux. Don't have sufficient funding at the moment
 - Analysis: identify Big Data motifs, apply for DOE/ASCR funding to pursue careful exploration of motifs and energy-efficient/ manycore issues

5. Strategies for New Architectures (3/3)

What role should DOE/ASCR/NERSC play in the transition to these architectures?

- Additional resources needed at NERSC to systematically explore issues related to energy efficiency and manycore
- NERSC Staff, User training
- Fund efforts similar to petascale post-doc program
- Fund industry + researchers (i.e. Intel/Whamcloud fastforward program) to explore I/O middleware stack

Other considerations:

Analysis algorithms will rely on dense/sparse linear algebra.
 Optimized implementations for manycore architectures will be important.

5. Special I/O Needs

- Collaborators (VPIC, Chombo, etc) use checkpoint/restart
 - Fast checkpoint/restart performance is key
 - Ideally, flush system memory to storage in 15-30 minutes
- QoS on shared resources (interconnect, I/O)
- Burst Buffer use cases:
 - Definitely relevant to accelerating Parallel I/O operations (reads and writes)
 - BUT we need software stack to intelligently use hardware
 - HDF5, Lustre/GPFS filesystem, etc
 - Relevant to In-situ/In-Transit vis. (GLEAN, Paraview, VisIt)

6. Summary

New science results:

 Facilitating multiple science code teams to store, analyze and visualize output

Recommendations on NERSC services

- Generally happy with professional quality of services rendered by NERSC, and Cray/NERSC staff collaboration
- Lagging behind other HPC centers in terms of I/O hardware provisioning
 - Mira: 240 GB/s, Sequoia: ~1TB/s, BlueWaters: 1 TB/s, Edison: 70 GB/s
- Risk of entering vicious cycle wherein Hero-scale runs are never attempted at NERSC

"Expanded HPC resources"

- I/O hardware, bandwidth, QoS
- Burst Buffer technology

